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ABSTRACT 

The production of plasma waves by a nonthermal beam of high energy electrons 

injected into a background thermal plasma is investigated. The coupled kinetic equations 

for the plasma wave and particle distributions is used to place an upper bound on the 

energy density and spectrum of the plasma waves generated by this process. The situation 

of an inhomogeneous electron beam is considered which enables us to clarify some of the 

ambiguities which arise when one trys to treat the homogeneous situation. 

It is shown that the wave-particle interactions have a significant, but not dominant, 

effect on the overall distribution of the electrons and that it is unlikely that such effects can 

be discerned in the observed bremsstrahlung or synchrotron radiation of the nonthermal 

electrons. Although a significant fraction of the nonthermal electron energy is transferred 

to plasma waves, the wave energy density is not very high because of their rapid attenuation 

by the thermal electrons. The subsequent conversion of the wave energy to transverse 

electromagnetic radiation is also discussed briefly. It is shown that the level of radiation 

produced is much less than the estimates of Zaitsev and Kaplan (1968) or Emslie and 

Smith (1984) and probably insignificant compared to direct synchrotron radiation by the 

nont hermal electrons. 
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I. INTRODUCTION 

Nonthermal electrons with energies far exceeding the energies of the particles in a 

background thermal plasma are responsible for generation of electromagnetic radiation in 

many astrophysical situations. The superposition of the two distributions can give rise to 

a positive slope in the overall electron velocity distribution (g > 0). It is well known 

that such a distribution is unstable (two stream or bump-on-tail instability; cf., e.g. Krall 

and Trivelpiece 1973) and can generate plasma waves and a plateau in the overall electron 

velocity distribution (g x 0) within a short time, rpl, which is on the order of the inverse 

of the plasma frequency. Such a turbulence (we will use plasma waves and turbulence in- 

terchangeably) is limited to a small region of linear size < crpl around the acceleration or 

injection site of the nonthermal electrons. However, as the electrons propagate their inter- 

action with the background plasma can generate more turbulence throughout the plasma 

if the interaction cross section decreases with increasing energy or velocity. Coulomb colli- 

b 

sions have this property and will tend to erode away the plateau continuously giving rise to 

a positive slope in the velocity distribution and therefore to plasma turbulence. Sometime 

ago, Zeitsev and Kaplan (1968) suggested that the conversion of the plasma waves gen- 

erated by this process into transverse electromagnetic radiation could be more important 

than the synchrotron mechanism in generating radio and microwave radiation in cosmic 

sources. 

This mechanism clearly requires a plasma with a high particle density, n, so that the 

plasma frequency vp = 9 x 1 0 3 H z 4 w  is in the GHz range and that the Coulomb 

collisions are the dominant dissipation process. One astrophysical situation where this 

condition is believed to be present is during the impulsive phase of a solar flare. The 

electrons responsible for most of the radiation during an impulsive phase are most probably 

accelerated somewhere high up in the corona and (if not ultrarelativistic) loose most of 

their energy through Coulomb collisions at densities exceeding 1010cm-3. Thus plasma 
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turbulence will be generated and the resultant electromagnetic radiation will be in the 

microwave range. Recently, Emslie and Smith (1984), using the estimation of the level 

of the plasma waves prescribed by Zeitsev and Kaplan (1968), evaluated the expected 

microwave flux during a typical flare. They obtained a high flux and concluded that this 

constitutes a strong constraint on the nonthermal thick target model for the impulsive 

phase of a flare. 

As we shall see in 5 I11 both of the above mentioned works overestimate the level of 

contribution of this process to the observed radiation. There we will compare the direct 

radiation production processes by the nonthermal electrons with the radiation production 

by waves. Before this, in the next section we examine the coupled particle, Langmuir wave 

kinetic equations and present a more rigorous derivation of the level of plasma wave energy 

density and its distribution. In particular, we solve these equations for the more realistic 

inhomogeneous condition. A brief summary is presented in 3 IV. 

11. LEVEL OF PLASMA TURBULANCE 

A. General Equations 

The astrophysical situation under consideration is the generation of Langmuir waves 

by a suprathermal beam of electrons passing through a Maxwellian plasma. The classical 

form of the kinetic equations, the quasi-linear equations, describe the evolution of the 

distributions of particles and waves due to the emission and absorption of the waves by 

the particles (e.g. Melrose 1980). In most astrophysical conditions, the geometry of the 

nonthermal source is determined by the magnetic field since it constrains the orbits of 

charged particles. The motion of an electron with Lorentz factor Y and velocity p c  in a 

uniform magnetic field of strength B consists of spiralling at the gyrofrequency vB = 2.8 x 

108Hz (B/100G) with a gyroradius rB M lOPY(lOOG/B)cm, while the velocity parallel to 

the field lines remains constant. The gyroradius in general is much smaller than the spatial 

variations in the plasma. Therefore diffusion of electrons across field lines can be neglected. 
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Then the only variation in the distribution function is along the magnetic field lines. As 

mentioned above the process under consideration is important only at high plasma densities 

so that the plasma frequency is large. We shall assume that the plasma frequency is larger 

than the gyrofrequency, which means n > lO’~m-~ (B/100G)2, and ignore the effects of the 

magnetic field on the equations. This does not invalidate the above assumption about the 

particle being tied down to the field lines. Although up > U, the magnetic field energy could 

be larger than the plasma energy density: P p  = 87rntcT/B2 = 2(Vp/VB)2(6T/mc2) < 1 for 

a nonrelativistic plasma. In the case of solar flares up M u, so a more complete analysis is 

required. We believe that the results presented below, found by assuming V, << up, would 

give a rough but realistic estimate of the conditions even when up M u,. We shall therefore 

ignore the effects of the magnetic field and treat the nonrelativistic problem. The effects 

of the magnetic field and the full relativistic analysis will be described in a future work. 

Under these conditions the emission of Langmuir waves is via the Cerenkov process. 

Then, as shown in the appendix, for a well collimated beam of electrons the electron 

and wave distributions can be considered to be functions of only the velocity parallel to 

the magnetic field. For a nonrelativistic beam of electrons the equations describing the 

evolution of the distributions of the particles and waves are (see equations A10, A26, and 

A31 in the appendix) 

Y c o l l  ln(v/vT)f - -w dW 
dt UP 

Here f(x, v, t )  and W(x, v, t) are the distributions of the electrons and waves as a function 

of distance x and velocity v along the field line defined such that the electron density n 

and the Langmuir wave energy density E~ are 
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W ( v )  is related to the number density N ( k )  of waves with wave vector k = v/27rup by 

W(v)dv  = (%)N(k)dk .  The first term on the right hand sides of equations (1) and (2) 

accounts for wave particle interactions and the second term with coefficient In( v/v,), where 

v, = ( ~ T / r n ) l / ~  is the mean thermal velocity of the electrons in the background plasma, 

describes the effect of spontaneous emission of waves. These equations are essentially the 

same used in the numerical work done by Takakura and Shibahashi (1976), except we have 

included the Coulomb interactions between the nonthermal and background electrons and 

collisional damping of the waves. 

The effect of collisions on the electron distribution can be found using a Fokker- 

Plank analysis. In the one dimensional treatment this gives rise to a term glcoll = 

&(v(v)vf(v)), which is represented by the last term in equation (1). The collisional 

damping of the waves is accounted for by the damping rate ycollW, the last term in 

equation (2). As shown in the appendix these equations are an excellent approximation 

to the more realistic three dimensional situation for moderate degrees of beaming of the 

nonthermal electrons (velocity dispersion perpendicular to the field less than the velocity 

along the field). 

Although equations (1) and (2) are a full mathematical representation of our system, 

we wish to work with a different, but equivalent set. By using equation (2) to elimate the 

term involving the product of W and in equation (1) we find 

This replaces equation (1) in our description. 

When treating the situation of a suprathermal electron beam passing through a back- 

ground plasma, it is useful to separate the electron distribution into two parts. So we let 

f(z, v, t )  = f,(z, v, t )  + f,(v), where f8(x, v, t )  is the contribution from the suprathermal 

electrons and fT(v) is the distribution of the background (Maxwellian) plasma. Similarly 

we let W ( z ,  v, t )  = W3(z, v, t )  + WT(v). The background plasma is assumed to satisfy the 

homogeneous form of the above equations (g = 0 and = 0). 
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1. Background Distributions 

The steady state thermal equilibrium condition leads to the background electron dis- 

tribution (one dimensional) 

which is the Maxwellian distribution integrated over the perpendicular velocity compo- 

nents. The background wave energy density can be obtained by substitution of this in 

equation (2). We note first that 

(6) 
1 1 

r c o l l / v p  - v(%-)/vp - - - - < 1 ,  
nTA;  N D  

where A, = vT/2?wp is the electron Debye length and ND = YnTAi  >> 1 is the to- 

tal number of electrons within a Debye sphere. Furthermore since the average value of 

(v2 F) x nT it is clear that the last term in equation ( 2 )  is negligible for the background 

conditions. So that v W  - Ai3/(-=) - AG3 and that the backgroung wave energy 

density is 

c T E K T X , ~  . (7) 

We shall see that the opposite is true for the suprathermal electrons in that the spontaneous 

emission term is negligible and 1 >> 2 0. 

2. Equation for Suprathermal Particles 

If the density of the high energy electrons ns = J fs dv << nT then for the streaming 

electrons the collision frequency is determined by the density of the background electrons 

and the damping rate of the waves produced by the stream (which have wavelengths > A,) 

are, respectively 

v(v) = 2acr%nT l n A ( ~ / v ) ~  , = v(vT)/2 , (8 )  

where ro = 2.8 x 10-13cm is the classical radius of the electron and l n h  z 20 is the 

Coulomb logarithm. For parameters appropriate for a flare 

) 'I2 (f) 3 /2  
(9) 
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Note that C - l  is of the order of N D  the number of electrons in a Debye sphere which must 

be much greater than unity for the validity of all our equations. 

Using these in equation (4) the distribution of the suprathermal electrons satisfies 

If the velocity of suprathermal electrons is much greater than the thermal velocity vT the 

cross terms W, and WT in equation (2) can be ingnored so that we have 

dt 

The derivative -& in all of the above equations is the total time derivative so that 

L!- = 

and vgr is the group velocity of the waves. If the acceleration and injection time scales of the 

electrons are much longer than the relaxation time scale then the explicit time dependence 

can be ignored. This will be true if the injection time q i n j  >> max(v(v)-’,v;’). For vp 

in the microwave range ( lo1’ GHz) .rinj will clearly exceed v;’ which is the characteristic 

time for plateau formation in the quasi-linear analysis (Grognard 1975). However, for 

most astrophysical situations [ << 1 so that we require Tinj >> l / v ( v ) .  This also is true in 

most astrophysical situations, in particular for the impulsive phase of solar flares except 

for millisecond time variability. Thus for observations with time resolution of a second or 

larger we can ignore the implicit time variation and look for solutions with = 0 and 

+ v& for the distribution f and 6 = E a + vgr& - 2 dw dk a for W ,  where wp = 27wP d t  

aw = 0. 
at 

3. Effects of Collisions 

Since the waves are generated by collisional errosion of the plateau we reproduce here 

some known effects of the collision term on the distribution of stream electrons. This will 

be useful in our treatment of the full equations. 
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Ignoring the wave-particle processes, the steady state electron distribution of the 

suprathermal electrons is given by 

We use f c O l l  to indicate that only collisions are included. The well-known solution of this 

equation is 

f c o l l ( ~ ,  v) = [I + z / A ( W p 2  f in(v[1+ z/A(v)]1'4) ) (13) 

where fin(v) = fs(z = 0, v) is the electron distribution at the point of injection, and X(v), 

the collisional stopping distance in the nonrelativistic limit, is 

(14) X(v) = - V -3 .1  - x l o l o (  V )'( 1010 nl. crn-3 )(%) cm . 
4 4 4  101Ocm/s 

This means that the slower particles are removed at smaller depths than the faster particles 

therefore producing spatial variations in the electron beam. At any fixed position the 

overall electron distribution will have a " bump-on-tail" distribution. 

To illustrate this effect we take as our initial injected distribution a distribution which 

is stable to Langmuir wave growth 

where r's are the well known gamma functions. Substituting this in equation (13) we 

obtain fcoll(z, v) and the distribution f ( ~ ,  v) = fcOll(z, v) + f T ( v )  for all plasma electrons, 

which is plotted as a function of velocity at different positions in figure (1). In the velocity 

range where > 0 the distribution is unstable and gives rise to Langmuir waves with 

phase velocities within the same range. We see that for values of the densities and velocities 

typical for solar flares this velocity range is quite large and increases with depth although 

decreasing in magnitude. 
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B. Spatially Homogeneous Case 

Previous investigators of this problem (Zaitsev and Kaplan 1968) have assumed not 

only steady state but also spatial homogeneity. We believe this to be an unrealistic as- 

sumption. To realize this situation the high energy particles must be injected uniformily 

thoughout a uniform plasma of dimension much larger than their collisional mean free 

path (X(v) - v/v(v)) and there must exist a sink to deposit the injected energy at a rate 

equal to that of injection. This is not the condition in most astrophysical situations and 

it clearly is not the case for a solar flare where it is believed that the particles are injected 

at the top of a loop in the corona and have mean free paths comparable to the length 

of the loop. However, to clarify the origin of the previous order of magnitude estimates 

and correct some errors we fkst treat this problem using the full equations (equations 10 

and 11). We shall see in the next part that the assumption of spatial homogeneity is not 

even necessary and that our analysis of the more realistic situation described there resolves 

some of the ambiguities that we shall find with the present assumptions. 

With the assumption of spatial homogeneity and if we ignore the spontaneous emission 

term (see below for justification) the equations simplify to 

These equations are presumeably valid in the velocity range v, ;L v ;L os, where us is 

the characteristic velocity of the injected nonthermal particles and v, is the lowest phase 

velocity where significant levels of plasma waves exist, which presumeably occurs at the 

velocity where the contributions to the total distribution from the nonthermal and thermal 

electrons are comparable. As evident from the dashed line on the left in figure (1) for 

n, << nT and v, >> vT the critical velocity v, will be a few times vT. We rewrite equation 

(17) to obtain the logarithmic derrivative of the distribution 

d In fS nT c 0 < -  = r l - - -  
d lnv n, 47r2 
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Here we have assumed that the total nonthermal particle density n, M v,f,. Since ( << 1, 

eventhough nT/ns  >> 1, in general, 9 < 1 and a plateau is formed. For example, if we 

use typical values for solar conditions: nT/n, < lo6, os/oT = 25, nT = 1010cm-3, and 

T = 106K, then 77 < 4 x << 1. 

We can also make an order of magnitude estimate of the wave energy density by 

equating the two terms in equation (16). (Note, however that both of these terms are 

positive quantities). This gives W,(v) M 2(vT/v)fg(v) so that the wave energy density 

cw M 2 ~ T n , ( o ~ / v , ) .  This is essentially the result of Zaitsev and Kaplan (1968), if one 

sets their A k / k ,  where k is a mean value for the wave vector and Ak is the range of the 

wave vectors, equal to unity. This is also the relation used by Emslie and Smith (1984). 

However, they overestimate the wave energy density by a factor of - o,/20T because they 

set Ak = 7rvP/vT. We shall see below that this is incorrect because although k,,, for the 

waves is near 2 ~ u ~ / v ,  - 2 w p / v T  most of the waves have k N 27rup/vs so that A k / k  - 1 

is the correct value. Note that with the above estimates for W, and 9 one can show that 

the spontaneous emission term which we ignored is smaller than the other two terms by a 

factor of the order of the Coulomb logarithm. 

For a more exact treatment equations (16) and (17) must be integrated. Integration 

of equation (17) leads to 

fs(v) = % ( E -  r):) , vc < v < v, , 
VS 

where we have set the constant of integration equal to %[ with n, as the number of 

the injected high energy electrons (or n,v, as the flux of injected electrons). Since these 

electrons loose energy both to Langmuir waves and to the background particles through 

collisions the equilibrium density of particles in the plateau is in general less than n,. For 

v,/v, >> 1 and r )  5 E? << 1 from equation (19) we have Jvy f, dv “N ns< with E < 1. 

Integration of equation (16) gives 
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where we have chosen the constant of integration so that W.(vC) = 0 as we do not expect 

excitation of waves with phase velocities below the plateau. If we assume that the plateau 

extends from v, to v, so that f,(v,) = fs(vs) = (this means that 77 << tv,/v,) then 
V .  

From this we obtain the energy density in plasma waves 

which for D, >> vc becomes 

We can thus estimate cw using the full equations, but at this point we do not know 

the value of < or v, (i.e. the values of the two integration constants). This of course can 

be done with solution of the complete set of equations where both the background plasma 

density and temperature and the distributions of suprathermal particles are calculated 

self-consistently. In the inhomogeneous situation described below, we relate the energy 

density in plasma waves directly to the distribution of the injected beam. There we will 

find an upper limit t s ( ~ ~ / v ~ ) ~ .  

C. Spatially Inhomogeneous Case 

The assumption of a spatially homogeneous electron flux in part B allowed us to omit 

the advective terms in the equations (1) and (2). As mentioned above, this is valid provided 

that the scale of spatial variations is much larger than the characteristic wave growth time 

multiplied by the velocity of the electron beam. This places a significant constraint on 

the size of the injection region. However, in most situations encountered in astrophysics, 

and in particular for a solar flare, the size of the injection region is much smaller than the 

collisional mean free path of the electrons and the advective terms cannot be neglected. 
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While a numerical solution is needed to solve the coupled inhomogeneous equations, we 

now outline a procedure for setting an upper limit on the plasma wave energy density. 

To simplify, we integrate equations (10) and (11) along the space coordinate to obtain 

equations relating the integrated electron and wave distributions. In fact, for comparison 

with observations which do not resolve the source region, the integrated values are the 

appropriate quantities. Integration of equation (IO) gives 

where we have defined the integrated quantities +(v) E Jr 'p(x,v)dx. Here we have 

used the boundary conditions Ws(O,v) = W,(oo, v) = 0 for the distribution of waves and 

fS(m, v )  = 0 for the electron distribution. 

A couple of remarks are in order here. Equation (24) is correct if the background 

plasma density and temperature, on which the collision frequency depends, are constant 

or the scale of their variation is larger than the stopping length X defined in equation (14): 

<< l/X(v). Otherwise v(vT) ,  vT and v(v) in (24) must be interpreted as mean d l n n T  - 
dz 7 dln dz 

values throughout the relevant region. Also the assumption about the boundary conditions 

on waves is not necessary. This is because for the steady state case % = V g r F  - 2 ~ .  
If the background is nearly homogeneous (3 << wp/X(v)) then % = v g r g ,  where 

vgr = 3v:/v, is the group velocity of the waves. The ratio of this term to v(vT)W, the 

dominant term in equation (ll), is - (vT/vS)' << 1. Thus, in general, % can be set 

equal to zero which also means that if as before we ignore the spontaneous emission terms 

we obtain equation (17) for the particle distribution throughout the whole region. So, if 

the background plasma is homogeneous, but the injection may still be confined to a small 

region so that the beam will be inhomogeneous, we have 

aw dw aw 

Integrating equation (24) and using the fact that both fs(v) and T8Vs(v) are zero for 
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v + 00 we find 

This expression can be simplified if we note that the left hand side can be expressed in 

terms of fcoll(v) by integrating (12) over 2 and v, which gives 

We combine these expressions to arrive at 

for the integrated wave distribution. Finally, we have for the integrated energy density of 

plasma waves 

The function fcoll(v) is known provided the input function, f i n (v ) ,  is known. For the 

illustrative example of equation (15) with the aide of equation (13) we find 

which is depicted in figure (2). 

Evaluation of fa(v), on the other hand, will require solving the complete set of equa- 

tions including both the background and the suprathermal particles. As in part B above, 

equation (25)  can be integrated leading to a solution similar to that in equation (19) but 

with the integration constant ( still unknown. However, we can set an upper limit on the 

plasma wave energy density assuming ja << fcoll. Substituting equation (30) in equation 

(29)  and integrating we then find 
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for the integrated plasma wave energy density. 

The quantity g, is the energy density of waves integrated along the field lines. This 

multiplied by the cross-sectional area perpendicular to the field line will give the total 

energy in waves. For comparison with the result in part B above we note that a significant 

level of Langmuir waves will be generated over a length of about X(vs) so that an estimate 

of the mean energy density of the plasma waves is given by 

Comparison of this with equation (23) shows that ( M (0c/2)$)2 as stated there. 

We emphasize that equation (31) is strictly an upper limit for the integrated plasma 

wave energy density. However, the value of fs(v) is needed for a more exact integration 

of equation (29). In figure (1) we saw that when considering collisions a hump is formed 

in the electron number distribution and that the velocity of the peak v p e a k  of the hump 

increases with depth (dashed line on the right). Langmuir wave growth (af/& > 0) is 

over the range of phase velocities vc to vpeak. One expects that quasi-linear relaxation will 

cause the distribution to flatten out in this range, however, the level of the plateau is not 

known. One may assume that its level is determined by the conservation of the number 

of fast particles and use the solution fcoll to find the height of the plateau (McClements, 

Emslie and Brown 1985). This is not a correct proceedure as it will lead to a negative 

energy density of plasma waves. This can be seen by noting that if s<fcoii - fs)dv = 0 then 

as expressed by equation (29) will be negative. Clearly the level must be below this. As 

mentioned above a numerical solution is neccessary to determine the number distribution 

of electrons and the exact energy density in plasma waves. 

We can obtain an estimate for this level if as before we set Ws(vc) = 0 for some o,. 

Clearly the critical velocity o, is a function of depth 5, but if we assume that for some 

mean value, V,, the integrated wave distribution F?i,(V,) = 0, then, from equation (28), 

we obtain f s ( E c )  = fcol~(ac). This combined with equation (25) and with the assumption 
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that 11 << 1 indicates that Jf, dv << Jfcozz dv and that the contribution of f, to 2, 

in equation (29) can be ignored so that our upper limit is very close to the true value. 

A schematic plot of f, is given in figure (2) for the purpose of qualitative cornparision 

with fcozz(v). Eventhough the difference between fcozz and f, is significant, it is unlikely 

that this difference can give rise to a discernable observable signiture. For example the 

bremsstrahlung x-rays from fcoll and f, will have indentical spectra except at energies less 

than E, = $m$. The required number of nonthermal electrons, however, will be larger 

by - (v3/vT)'I2,  which is the difference between the two curves at large velocities. 

I 

We also note from equation (28) that W,(v) increases with v so that most of the 

contribution to E, comes from high velocities v N v,, i.e. smaller wave vectors k - vp/vs .  

Then the more realistic value for A k / k  is unity not v3/22)T as was assumed by Emslie 

and Smith (1984) in their order of magnitude estimation. This will be even more clear 

in the last section where we examine the conversion of the Langmuir waves to transverse 

electromagnetic radiation. 

Finally we note that the energy of the waves is a small fraction of energy of the high 

energy particles with total energy Etot = J imv2fcoll(v)dv: E, M Ef0f(~T/E,)3/2L(S), 

where E, = gmv: and L(6) is a function of 6 of order unity (for the example given here, 

L(6)  = @(6 - 2)/r(6 - $) M (S/2.5)3/2). The factor ( k T / E , ) 3 / 2  = 23/2(vT/v , )3  is 

due to the fact that the collisional damping rate of the waves is higher than the collisional 

loss rate of the nonthermal particles by the factor ( ~ , / v = ) ~ .  Thus, even though the terms 

on the right sides of equations (1)) ( lo) ,  (16) or (24) are comparable, the energy density 

in the waves is negligible as compared to the energy density in the nonthermal particles. 

Furthermore, assuming that the energy density of the nonthermal particles is less than 

the energy density in the background plasma (otherwise, our assumption of a steady state 

homogeneous background plasma breaks down completely), then E ,  << = nT kT. 

Furthermore, as expected, the effects of the waves on the nonthermal electrons is 

comparable or smaller than the effect of the Coulomb collisions since the Coulomb collisions 
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are the source of the plasma waves in the first place. Thus, the type of analysis such as 

Leach and Petrosian (1981) which neglect the presence of the waves will still give reliable 

estimates of the direct radiation signature of the nonthermal electrons. Moreover, if one 

includes the pitch angle diffusion terms, which tend to  isotropize the distribution of the 

electrons, especially those at lower energies, the effects of the plasma waves will be further 

reduced. 

III. THE RADIATION SIGNATURE OF THE WAVES 

We now examine the observational consequences of the Langmuir wave generation 

discussed in the preceding section. 

Even though the fraction of the total nonthermal energy converted into plasma waves, 

R, = Z,/Etot , is small, it can be larger than the fraction of energy radiated through 

Coulomb bremsstrahlung or synchrotron processes. Thus if a significant part of the plasma 

wave energy is converted to  transverse electromagnetic waves (radiation for short), it could 

exceed the direct radiation from the nonthermal electrons. 

A. Direct Bremsstrahlung and Synchrotron Radiation 

For the purpose of comparison with emission by waves, we first give the expressions 

for direct radiation by the nonthermal and nonrelativistic electrons. 

The total bremsstrahlung radiation can be obtained from the bremsstrahlung yield 

of the thick target model (cf., e.g. Petrosian 1973. Note the present l n A  is one half 

of the 1nA used in the earlier paper.) For a particle with initial energy E this yield 

is Ybrem(E)  = (4a/37rlnA)(E/mc2),  where cr is the fine structure constant. For the 

distribution of equation (15) with characteristic energy E, = fmv;, the rate of energy 

produced in bremsstrahlung radiation by the injected beam is 
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Similarly, we can evaluate the rate of energy produced in synchrotron radiation gsynch 

from the total yield of a nonrelativistic particle with initial energy E: 

So that for the distribution used here, using equations (8) and (14), we can write 

where B l  is the component of the field perpendicular to the line of sight. Note that the 

ratio of these two rates is Zsynch/ ibrem M 2 0 ( ~ ~ / v ~ ) ~ ( E ~ / 2 0 k e V ) ~ / ~ .  We have assumed 

here that the source is transparent to all radiation which may not be true. We will return 

to the optically thick cases at the end of this section. 

B. Radiation Produced by Waves 

We consider here two mechanisms for conversion of the plasma waves to radiation: 

1) inelastic scattering of waves by electrons, and 2) wave-wave fusion into radiation with 

frequency 2 v p .  It appears that Zeitsev and Kaplan (1968) had the f i s t  of these processes in 

mind but their estimate of the spectrum or intensity of the radiation seems to be incorrect. 

As we shall see below, this mechanism is negligible as compared with the second one, which 

is the mechanism used by Emslie and Smith (1984). We use the expression for the rate 

of these processes given in Kaplan and Tsytovich (1973) (KT for short). We assume the 

weak magnetic field cases as we have done in the previous section. 

1. Electron Scattering 

The scattering of plasma waves (of frequency up and wave vector k )  by electrons of 

velocity v can produce radiation with frequency u 5 kv/27r (cf. equation A-5 of KT). 

Transverse waves with frequency less than the plasma frequency do not propagate, so only 

electrons with velocities v > 27rup/k are significant. Since the plasma waves generated by 

the plateau formation have wave vectors in the range v p / v ,  > k/27r > vp /v s  (with greater 
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concentration towards the lower end) the frequency of radiation generated by electrons of 

velocity v will be 5 vp(v/v,). Therefore only electrons with v > v, are of importance, so 

that the inelastic scattering by thermal electrons considered by Zeitsev and Kaplan (1968) 

produces transverse electromagnetic waves of frequency less than the plasma frequency 

which cannot propagate. An upper limit on the radiation produced can then be obtained 

by assuming that all of the nonthermal electrons produce radiation above the plasma 

frequency. The total radiation energy production rate of electron scattering then can be 

estimated to be 

(36) 
2 e s  - rronsvzgw/c 2 . 

On the other hand, the synchrotron radiation produced by the nonthermal particles of 

velocity v, in a magnetic field of strength B and energy density cB = B2/8.rr is given by 

equation (36), so that 

i e s / i s y n c h  M E w / & B  << 1 (37) 

Thus electron scattering can be neglected since for most plasmas cB 2 

Ew < n,kT << c T .  

= nTkT and 

More accurately, if we integratge equation (A-5) of KT over the distribution of waves 

and the nonthermal particles, we can obtain the total radiation produced from the scat- 

tering of the nonthermal electrons by the plasma waves. The integrated value requires 

knowing (fb). We approximate this quantity by f*/X(vs) to obtain 

which when compared with equation (35) gives 

< < 1 .  (39) 
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2. Wave-Wave Fusion 

The non-linear conversion of two plasma waves into electromagnetic radiation with 

frequency twice the plasma frequency can be much more significant. Using the appropriate 

equation form KT (cf. Table VI of the Appendix), one can estimate the total rate of energy 

production by this process (for A k  - k N 27rup/w,) to be 

EZ”, I - %:cX(v,) (5) 
5 

so that with the help of equations (32) and (36) we find 

Using our distribuiton of wave vectors (equation 28), we can obtain a more accurate value 

of Zzyp. The rate of energy production is (Table VI of KT) 

/w4W2(w)dw . S&r2 U ~ ( K T ) ~  
5 nTmc5 

i2”,  = - 

Using kw, = 27rup to rewrite this as an integral over wave vectors, we find that the energy 

produced is proportional to J W2(k)  k-6  dk oc J k - 8 d k ,  where equation ( 2 8 )  was used for 

the last relation. Therefore the rate of fusion of plasma waves is strongly peaked at low k 

values, so that the effective spread of wave vectors is not given by - kmin,  but is on 

the order of I C m * , , ( -  27rup/w,). Finally, we find that the integrated energy production rate 

due to the fusion of two plasma waves is (approximating the I’ functions by the Sterling 

formula) 

where we have approximated @2 by T$W/X(w,). The ratio of this rate to the synchrotron 

energy production rate is (approximating the I’ functions by the Sterling formula) 
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As we have stated before E,,, << B t ,  but since ND >> 1, this ratio may or may not exceed 

unity. Using equation (32)  this ratio can be written 

(45) 

In general we expect the last term to be less than one otherwise the drift velocity of the 

reverse current will exceed the thermal velocity and therefore destroy the beam rapidly. If 

(nsVs/nTt+) < .01, then for coronal conditions this ratio is 51, but it will be much less 

than one in the chromosphere and the photosphere. Note that our estimate of the yield of 

2vp photons is lower than that by Emslie and Smith (1984) because, as mentioned above, 

they over estimate the wave energy density by vs/2vT and the 2vp emission is proportional 

to the square of this quantity, which could be as much as lo3.  

Most importantly, however, since in most astrophysical situations V, - vp and that, 

in general, the first few harmonics of synchrotron radiation are self-absorbed, it is unlikely 

that the 2vp photon can escape. In the case of solar flares it is clear already from equations 

(33 )  and (35) that the syncrotron yield is x 10-1 the bremsstrahlung yield. This means 

that optically thin synchrotron emission gives microwave energy flux comparable to the 

bremsstrahlung x-ray energy flux while as was pointed out as soon as x-ray observations 

of the impulsive phase of flares were available (Peterson and Winckler 1959) the observed 

microwave flux is negligible compared to the x-ray flux. This problem can be resolved 

by inclusion of self-absorption of the synchrotron radiation which reduces the flux by the 

large amount necessary if self-absorption occurs up to high harmonics v w ~ O V ,  (Holt and 

Ramaty, 1969). Thus, if ~ O V ,  > 2uP, or equivalently if B > 6.4 ( n , / l O ' ~ m - ~ ) ~ / ~  gauss, 

the 2vp photons will also be absorbed and unobservable. 

Finally, we note that ies << i Z V p  << 'Ycol lEw where the last term is the rate of damping 

of the waves by elastic collisions and is the term included in our equation. This justifies 

the neglect of the inelastic process in the kinetic equation for the waves. 
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IV. SUMMARY 

We have solved the coupled kinetic equations of nonthermal electrons and estimated 

the level of the plasma waves produced by the bump-in-tail instability which arises as 

a result of the Coulomb collisions of the nonthermal electrons with the (much colder) 

background plasma. We have also investigated the radiation signature of these waves 

coming to the following conclusions. 

1) For a spatially homogeneous (but perhaps unrealistic) electron beam situation the 

earlier estimation by Zaitsev and Kaplan (1968) is correct if the spread in the range of the 

wave vectors satisfies the relation Ak/k N 1. We note here that Emslie and Smith (1984) 

incorrectly use A k / k  - v,/2vT and therefore overestimate the wave energy density leading 

to a large error in the expected amount of radiation produced by fusion into electromagnetic 

waves at twice the plasma frequency. 

2) For the more realistic spatially inhomogeneous beam one can put an upper limit on 

the total (spatially integrated) wave spectrum and energy density. This clarifies some of the 

ambiguities which arise in trying to estimate the wave energy density for the homogeneous 

case. 

3) Since the Coulomb collisions are the primary agent for the production of plasma 

waves, the effects of the interaction of plasma waves with the nonthermal electrons could 

be at most as important as the effects of collisions. Therefore we expect the wave-particle 

interactions to have a significant, but not dominant, effect on the overall distribution of the 

electrons. It is unlikely that such effects can be discerned in the observed x-ray spectrum 

of the nont hermal elect T o n s .  

4) Eventhough a significant fraction of the energy of the nonthermal particles is trans- 

mitted to plasma waves, the plasma wave energy density is much smaller than the nonther- 

mal particle energy density because the collisional damping of the waves by the background 

plasma is much faster than the collisional energy loss rate of the nonthermal particles. Thus 

the plasma waves act as agents for transferring the energy of the nonthermal electrons to 
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the background plasma. 

5 )  Because of the low energy density of the plasma waves we find that the intensity of 

the radiation obtained by conversion of these waves to transverse electromagnetic waves to 

be much smaller than that estimated by Zaitsev and Kaplan (1968) or Emslie and Smith 

(1984). In particular the radiation (microwave) yield due to inelastic scattering of the 

waves by electrons is expected to occur mainly below the plasma frequency and down from 

the direct production of microwave radiation via synchrotron (or cyclotron) emission by 

the ratio of magnetic field energy density to the plasma wave energy density which we 

show to be a large number. 

6) A more efficient process of emission of plasma waves to transverse electromagnetic 

waves is the fusion of two Langmuir waves into transverse electromagnetic radiation at 

twice the plasma frequency. We show that even the level of this radiation is less or com- 

parable to the direct synchrotron radiation. More importantly, both of these processes 

lead to radiation levels which will greatly exceed the observed levels if the synchrotron 

absorption is ignored. Even at modest values of the magnetic field this cannot be justified 

so that as long as B > 6.4 (n/108cm-3)'/2 gauss the absorption is large enough to pre- 

vent an observable signature of the plasma waves produced by the bump-on-tail instability 

considered here. 
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APPENDIX 

Although the distributions of electrons and of Langmuir waves will in general depend 

on three spacial dimensions and the three velocity components, the situation of an electron 

beam injected into a background thermal plasma in the presence of a weak magnetic field 

introduces conditions which will allow us to reduce our description of the electron and 

wave distributions to a dependence on the distance along the magnetic field line (x in 

the paper) and the component of velocity along the magnetic field vll. We will arrive at 

equations describing the evolution of the one-dimensional distributions (in this appendix 

we will suppress the spatial dependence and focus on the velocity dependence) f”(vll) and 

@(v,) obtained from integrating the full distributions for f(v) and W(k) as 

In part a we derrive the Coulomb collision terms and in part b the wave-particle 

interaction terms. The final results are equations (1) and (2) of the paper, where f ( v )  = 

f”(v,,) and W(v) = ~ ~ ~ I ? ( k , , ) / d l ‘  with kIlvll = up are the distributions used there. 

a. Coulomb Collisions 

The effects of collisions with the thermal particles on the electron distribution is 

evaluated using a Fokker-Plank analysis. The change in the distribution function is written 

as (cf. e.g. Krall and Trivelpiece 1973) 

where f(v) = f(vz,vy,vz). 

thermal particles, the values of the average rate of changes in the velocities are given by 

For beam velocities much larger than the velocity of the 
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and 

where a labels the particle type in the background plasma and S i k  is the Kronecker delta. 

For a fully ionized hydrogen plasma we obtain 

where C = 47rc4r,2n~ 1nA. Integrating this equation over v, we find 

where f = f(vll,v,). 

( A V ~ / V ~ ~ ) ~  << 1 we have 

Assuming that f(vl l ,vl)  has a width in v, of Av., then for 

(A81 

where 27r J ~ ( ~ , / v ~ ~ ) ~ f v ~ d v ~  M ( A v l / ~ l l ) 2 j  was used. 

For an injection of electrons which is strongly beamed (Avl/vll)2 << 1, the first term 

will be much larger than the second term, which we neglect. The last term involves the 

derivative d. It will be important if its magnitude is comparable to that of the wave 

particle term vI1 W 3- found below in part b. We will show that Langmuir wave genreration 

by the beam leads to W M ~ , / v ~ ~ k T  M n s v T / v ~  (cf. equation 33). Therfore the last term 

can be neglected provided that 

avll 

where n, ,  n T ,  vp, and v(vT)  are the beam density, background density, plasma frequency, 

and collision frequency of thermal electrons, respectively. Typically 7 < 1 (see equation 

18) therefore this condition will be satisfied. Therefore the collisions lead to a term, 
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The Landau damping of waves with wave vectors k < wp/vT is negligible, so that 

collisional damping (free-free absorbtion) must be considered. For Langmuir waves the 

damping rate Ycoll = + (Ginzburg 1961) is independent of the wave vector so that 

the integration over k ,  can be carried out simply leading to the damping term -YcollW 

on the right hand side of equation (2). 

w4 In A 

b. Wave-Particle Interactions 

The evolution of the distribution of particles, f(p), and waves of mode 0, N"(k), due 

to the emission and absorption of waves by the particles is determined by the quasi-linear 

equations. In the classical limit these are (Melrose 1980) 

and 
af 

d t  ap = J"P w'(p, k)(f  + N%k. -) , 

where w"(p, k) is the probability per unit time that a particle having momentum p will 

emit a 0-wave with wave vector k in the range 03. d3k 

For Langmuir waves 

and their energy density per ~&, is W = hwpNi, so that equations ( A l l )  and (A12) 

become 

and 
dW -=YyI,W+ayI, , 
dt 

with 

d3 k k k W 6(wp  - k - v) (-416) 
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e2wp k 
d3k S(W, - k * V) ^=-J 27rm 

I C 2  m 

27rewp 2 

7, = 47r2e2wp 
d3v k ’ af S(wp - k - v) 

( ~ k  = (7) J d 3 v  f S(wp - k - V )  , 

where we have changed variables (f(p)d3p = f (v)d3v)  and taken the nonrelativistic limit 

(p = mv). 

We will now derive one-dimensional forms of the above equations and give the restric- 

tions on the electron distributions for which these equations hold. Integrating equation 

(A19) over v2, the component of velocity along the magnetic field, 

Using the Taylor expansion 

where vlI = wP/k,,, keeping the fist two terms in the sum, we obtain 

To arrive at equation (A22) we have used Jvyf(vI~,vy,v2)dvydv,  = 0 and made the ap- 

proximation J v ~ f ( v l , ,  v,, v,)dvydvz = ~ ( A V , ) ~ ~ ( V ~ ~ )  (similar relations were used for the v, 

integrals). Now if we assume that the electrons are beamed, ( h)2 << 1 and ( y)2 << 1 

then we can neglect the second term in equation (A22). 
VI1 

Writing out equation (AM) we have 

r k  = 47r2e2wp / d ” . ( k l l Z +  k,-)S(wp - kllv, - kyvy - kzvZ) , (-423) 
k2 m 8% 

where f = f (v2, v,, v,) and k = ( I C i l ,  IC,, k,). This expression involves two types of terms. 

The first term we encountered above when finding Qk. The second type occurs in the 
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last two terms, which are similar due to the symmetry between the y and z directions. 

Integration of the last terms is done using 

(A24) 

where zll = 2. Integration of the first term over d v ,  is zero. Then making the same 

approximations used above for the second terms gives 

Multiplication of equation (A15) by 27rk, and integrating over gives 
2x1 

where 27r J k ,  W(k)kl:kl ( 2 n )  = ( A k , ) 2 m ( k l , )  was used. The assumption that ( A k l / k l l ) 2  << 1 

in equation (A26) leads to the wave-particle terms in equation (2) of the paper. Note that 

wp = kll vll has been used throughout. 

Now we outline the proceedure used to obtain the wave-particle terms in equation (1). 

Since many of the same approximations used above are used here we will omit most of the 

details. Notice that A simplifies immediately to 

k k dk dcosx d q  S(W, - kv  COS X )  , 
21rm (A271 

where k - v = k v  cos x. Integration over 7 eliminates the components perpendicular to v, 

so, 

where for k > wP/vT Langmuir waves 

A =  

are heavily Landau damped. Therefore 

2 2  e w p  v 
m v 3  ln(v/vT) -- 
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The reduction of equation (A16) follows similarly. We find 

where the definition of the one-dimensional distribution ii/( kll)  was used. 

Now we integrate equation (A14) over vI to obtain 

The f i s t  term follows directly from equation (A30). The second term is obtained from 

integration of Af over vl, which is similar to the integration done in part a) of this 

appendix (cf. equations A7 and A8), therefore requires that ( A V ~ / V , , ) ~  << 1. 

This then completes our description of the wave-particle effects, combining equations 

(A31), (A26), and (A10) we arrive at equations (1) and (2), the set of equations used in 

the paper. These equations are valid for electrons whose velocity along the field line is 

larger than the dispersion of the perpendicular velocity. 
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FIGURE CAPTIONS 

FIG. 1.-The electron number distribution is plotted vs. velocity for the input function 

given by equation (15) with S = 4, ns/nT = and vT/vs  = .04. The curves 

are labeled by the ratio z/X(vS) and the thermal distribution is also included. The 

dashed curves show the dependence of o, and oUpeak with depth. 

FIG. 2.-The integrated (over spatial coordinate z) electron number distribution is plotted 

vs. velocity with the parameters set to the same values as in figure (1). The solid lines 

are the distribution at the injection point, the thermal distribution, and fcoll(o) = 

fcolz/A(vs). The dashed line is a schematic drawing of fs(o) = fs( V > / + S  1. 
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